Expression analysis of genes related to metabolism and virulence of *Mycobacterium leprae* during infection in human host by microarray

D S Chauhan,

Rahul Sharma, Kiran Katoch, Vishwa Mohan Katoch
Background

- Leprosy is one of the oldest and notorious, but least understood diseases of man which continues to be a challenge to health worldwide, with about 250,000 new cases being currently detected every year.

- Although we got many successes in controlling the Leprosy, still there is a need for research on early diagnosis, treatment, and prevention.

- Functional analysis of *M. leprae* genome has potential to provide enormous opportunities for the better understand of disease as well as designing the rationale for effective early diagnosis and control strategies.
To identify genes of *M. leprae* those are highly transcribed in human host.
Materials & Methods

i. Designing of gene specific oligo-nucleotides probes of *M. leprae*
 Gene specific oligos (70mer length) by OligoPicker 3.2.1.

ii. Preparation of Partial DNA Chip of *M. leprae* :
 - A panel of 64 targets
 (60 genes specific oligos + 4 controls)
 - Targeted genes known to be associated with virulence in other organisms as well as basic metabolism.
 - Positive control: 16S rRNA gene of *M. leprae*
 - Negative control: β-actin (Human)
 - Labeling controls : Cy3 and Cy5 labelled DNA.

Partial DNA Chip of *M. leprae*
Scalpel biopsies samples from Leprosy cases (untreated or Bacteriological Index >3)

Biopsies from healthy (Non Leprosy) controls

Processing of specimen and RNA isolation

Purification of M. leprae RNA from host RNA

- Preparation of Cye 3, Cye 5 labeled cDNA
- Hybridization of cDNA to partial DNA Chip

Expression profiling by Microarray analysis

- Identification of significantly expressed genes

Validation of gene expression by Real Time RT-PCR/ In-situ RT PCR

Bioinformatic analysis of selected genes
Results

- Out of 60 selected ORFs, 11 were found to be over-expressed (Signal to noise ratio > 2.49 and visible against background)
- Of these 11 ORFs identified, 6 belong to metabolism and 5 were related to bacterial virulence
- No such signals were detectable in RNA derived from normal human skin.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Gene ID</th>
<th>Gene Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ML1095c</td>
<td>sucA</td>
<td>Metabolism</td>
</tr>
<tr>
<td>2</td>
<td>ML1363</td>
<td>pyrG</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ML0726c</td>
<td>accA3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ML0160</td>
<td>purN</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ML1900</td>
<td>mmaA1</td>
<td>Virulence</td>
</tr>
<tr>
<td>6</td>
<td>ML2230</td>
<td>purB</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ML0774</td>
<td>mtrB</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ML2496c</td>
<td>dnaK</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>ML0979</td>
<td>pgsA3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ML2038c</td>
<td>bfrA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ML 1358</td>
<td>tlyA</td>
<td></td>
</tr>
</tbody>
</table>

Continued....
Real Time RT PCR: Relative quantification results show consistent over-expression of all eleven genes in TT, BT, BB, BL, LL as well as reaction cases of leprosy.

Fig 1. Relative expression of genes related to metabolism

Fig 2. Relative expression of genes related to virulence

Higher transcript level of tlyA (ML1358) as compared to 16S rRNA and other genes
In-situ RT PCR:

Expression of identified genes were also confirmed at the site of infection by *in-situ* RT-PCR.

Figure: Section from BT/BB case showing multiple positive signals with *in situ* RT-PCR targeting accA (ML0726). Grade +

Figure: Section from LL case showing multiple positive signals with *in situ* RT-PCR targeting PurN(ML160). Grade +++
Relative expression of accA gene in different disease conditions

Patients were from endemic region (Ghatampur, UP, India)

accA was found to be hyper-expressed during the reactions in leprosy patients
Bioinformatic analysis of *accA* gene

Homology structure of accA protein showing epitopes hydrophilic (PEPTIDE-2) and B-Cell epitope (PEPTIDE-1) used for study sero-reactivity in leprosy patients.
Cloning and expression of identified peptides

Physico-chemical properties of peptides selected for cloning and sero-reactivity

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Length</th>
<th>Region</th>
<th>Molecular weight (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEP-1</td>
<td>130</td>
<td>180 to 310</td>
<td>14732.5</td>
</tr>
<tr>
<td>PEP-1</td>
<td>100</td>
<td>450 to 550</td>
<td>10611.9</td>
</tr>
</tbody>
</table>

Transformed *E.coli* cell lysate showing over expression of antigenic region (PEP-1 = 14.7 kD) and antigenic region (PEP-2 = 10.6 kD) in lane 2 and 3 respectively.

SDS-PAGE electrophoresis of cell lysate transformed and transformed non transformed *E.coli* bacterial cell

Lane 1: Non-transformed *E.coli* cell Lysate, Lane 2: Transformed *E.coli* cell lysate; Lane 3: Transformed *E.coli* cell lysate; Lane 4: Molecular weight marker.
Sero-reactivity of accA3 (LM0726) in different types of leprosy cases against selected antigenic regions

Leprosy patients: 40 (10 BL/LL + 10BB/BT + 10 reaction (5RR+5ENL) + 10 healthy)

No significant difference ($P>0.05$) in sero-reactivity was observed between the patient/s of same clinical type with and without reaction.
Conclusions

1. The highly expressed accA appeared as useful molecular marker for monitoring the diseases specially reactions in the leprosy.

2. RT-PCR targeting tlyA appears to be more sensitive then 16S rRNA for detection of viable bacilli, therefore it may be a quantitative viability assessment of *M. leprae*.
Acknowledgement

Dr. Mohan Natrajan
Dr. Mallika Lavania
Dr. S.P Tripathy

Indian Council of Medical Research, New Delhi
International Leprosy Association

Thanks ...