Identification of Serological Biomarkers of Infection, Disease Progression and Treatment Efficacy for Leprosy

John S. Spencer
Colorado State University

18/09/2013
Clinical Spectrum of Leprosy

<table>
<thead>
<tr>
<th>Bacterial load</th>
<th>TT</th>
<th>BT</th>
<th>BB</th>
<th>BL</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubation time</td>
<td>(3 - 5 years)</td>
<td></td>
<td>(8 - 10 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell mediated immunity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin lesions</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Nerve damage</td>
<td>1-2</td>
<td>1-3</td>
<td>2-3</td>
<td>2-3</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Skin lesions:
- **Light (1)**: Mild
- **Moderate (2)**: Moderate
- **Severe (3)**: Severe

Nerve damage:
- **Light (1)**: Mild
- **Moderate (2)**: Moderate
- **Severe (3)**: Severe

Tuberculoid (TT/BT) and Lepromatous (BL/LL) types of leprosy.
Serological assays: Primary issues

PGL-I antibody detection in patients and household contacts

- PGL-I antibody is detected in virtually all lepromatous patients but only about 40% of tuberculoid patients are positive.

- Contacts who are positive for Ab to PGL-I have a >8-fold risk of developing the disease, but half who develop disease do not have Ab to PGL-I, particularly PB patients.

- Other proteins or target antigens have been examined that can predict infection or disease progression (LID-1, Ag85B).

- Developing biomarkers that can predict those most at risk of coming down with disease is key to reducing leprosy transmission.
Outline of Study

• The reactivity of 12 recombinant proteins with lepromatous and tuberculoid patient sera was examined. All sera obtained from subjects from the Philippines.

• The temporal antibody titers of lepromatous patients was assessed during MDT therapy and for a total of two years after diagnosis by serial bleeds every 3 months.

• 51 household contacts were bled every 3 months and their antibody titers checked for at least two years to determine if there were any increases associated with onset of disease symptoms.

• An ELISA assay was used to determine the titer of the sera against the *M. leprae* antigens ML2028 (Ag85B), PGL-I, and LAM. Western blot was used to determine the reactivity to ML2028, LID-1 and the native cytosolic protein fraction.
LID-I (fusion of ML0405 and ML2331) as a potential leprosy diagnostic

Variable responses of MB and PB patients to recombinant protein antigens

1. LID-1 (IDRI)
2. ML2055 modD
3. ML0286 fba
4. ML2028 Ag85B
5. ML2038 bfr
6. ML0050 CFP-10
7. ML0380 GroES
8. MLSA cytosol

MB-10

MB-11

MB-12

PB-4

PB-6
Western blot patterns of 51 HC baseline sera to LID-1, Ag85, and native *M. leprae* MLSA

Lane 1, LID-1; lane 2, Ag85B; lane 3, native MLSA cytosolic protein
Increases in antibody titer over time during a 15 month period in a household contact

Lane 1, Ag85B; lane 2, native *M. leprae* cytosolic protein

Effect of MDT treatment on the antibody titer towards *M. leprae* antigens

Temporal antibody responses in leprosy patient MB-2 from the time of diagnosis (baseline, classified as LL) to 24 months after beginning MDT therapy against *M. leprae* antigens as determined by Western blot. The BI at diagnosis was 3.5+, reduced to 2.5+ after completion of 1 year MDT. Reversal reactions at 1 month, 9 months, and 12 months, treated with steroids each time.

Lane 1, LID-1; lane 2, ML2055; lane 3, ML2028; lane 4, CFP-10; lane 5, MLSA native cytosolic protein.
Effect of MDT treatment on the antibody titer towards *M. leprae* antigens

Temporal antibody responses in leprosy patient MB-3 from the time of diagnosis (baseline, classified as BL) to 24 months after beginning MDT therapy against *M. leprae* antigens as determined by Western blot. The BI at diagnosis was 3.2+, reduced to 1.33+ after completion of 1 year MDT. Treated with low dose steroids the first few months while on MDT for neuritis, tapered off by 6 months. Dramatic improvement and clearance of lesions within the first few months.

Lane 1, LID-1; lane 2, ML2055; lane 3, ML2028; lane 4, CFP-10; lane 5, MLSA native cytosolic protein.
Conclusions and future directions

• MDT therapy causes a reduction in the titer of antibody responses over time, with a more rapid clearance of antibody towards protein antigens, and a more gradual lowering of antibody to PGL-I and LAM, suggesting that these antigens either persist or are degraded more slowly than proteins.

• A higher initial BI generally elicits a higher titer to all antigens, although responses to specific recombinant proteins are variable and patient specific.

• In healthy HC of MB index cases, positive antibody responses against both LID-1 and Ag85B are likely biomarkers of infection. Increases in the titers against both PGL-I and LAM over time may indicate active disease with an increase in the BI.

• During the first 15 months of monitoring the 51 HC, one individual progressed to active disease. This translates to 2% overall, a rate very similar to a larger Brazilian study of HC over a 5 year period. We will continue to follow this group to determine if others will come down with disease.
Collaborators and funding

Colorado State University
Patrick J. Brennan, Ph.D.
Delphi Chatterjee, Ph.D.
Mary Jackson, Ph.D.

Leiden University Medical Center, The Netherlands
Annemieke Geluk, Ph.D.

Infectious Disease Research Institute, Seattle, WA
Malcolm Duthie, Ph.D.

London School of Hygiene and Tropical Medicine
Hazel M. Dockrell, Ph.D.

Leonard Wood Memorial, Cebu, The Philippines
Marivic Balagon, M.D.
Paul Saunderson
Armi Maghanoy, M.D.
Irene Mallari, M.D.

Funding provided by:
NIH, NIAID, DMID Contract N01 AI-25469
NIH, NIAID Grant R01 AI-47197
NIH/NIAID HHSN201005160005 Mod 5
CNPq
IDEAL funded through Heiser/Turing/NLR grant
The Order of MALTA Grants for leprosy (MALTALEP)